O 0O 000000000 0000000060600 90°00000O0COC O

DT

Software Infrastructure to Enable Parallel Spatial Data
Handling

First, Second, Third Interim
and
Final Technical Report
by

M.J.Mineter, S.Dowers, B.M.Gittings
(June 2001)
_ United States Army
EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY
London, England
R&D 8707-EN-01 Contract N68171 00 M 5807

University Of Edinburgh
Approved for public release, distribution unlimited

20010731 103

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average ! hour per response, including the time for reviewing instructions, searcting existing data sources,
gathering and maintasing the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operatians and Reports, 1215 Jetferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704.0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

June, 2001

3. REPORT TYPE AND DATES COVERED
Interim & Final:

6-JUN-00:5-JUN~-Q

4. TITLE AND SUBTITLE

Software Infrastructure to Enable Parallel
Spatial Data Handling

5. FUNDING

6. AUTHORIS)

M.J.Mineter, S.Dowers and B.M.Gittings

NUMBERS

C N68171-00-M-5807

01d College,

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)

The University of Edinburgh
Department of Geography
South Bridge
Edinburgh EH8 9LY.

REPORT

8. PERFORMING ORGANIZATION

NUMBER

USARDSG-UK
Edison House

London NWI1 5TH

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

223 01d Marylebone Road,

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

software to:

3. Extract information from the database using a series of tactical decision aids.

The report describes research intended to enhance the timeliness and scope for intervisibility analyses to
improve decisions related to intervisibility. The research entailed the development and use of prototype

1. Manage the completion of a large number of visibility analyses, each of which determines the visible
regions from a point in a digital elevation model. The project accomplishes the visibility analyses by
efficient use of spare CPU cycles on a network of processors.

2. Build a database from these analyses. The database is sufficiently compact for a test grid of 466 rows,
each with 336 columns to reside comfortably on a CD (it requires 84Mbytes).

The concurrent execution of multiple visibility commands, accomplished by the development of a
multicomputing framework achieved significant speed-up, limited only by the number of processors
available (13). The compression methods adopted for the database achieved ~97% reduction in volume,
whilst still allowing timely access to the data to support interactive use of tactical decision aids.

14. SUBJECT TERMS

Computing;

Software;

Spatial Data;

GIS;

15. NUMBER OF PAGES

Parallel

16._PRICE CODE

processing; multi-computing; performance; intervisibility
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF THIS | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 {Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

USAPPC V1.00

1 OVERVIEW OF BODY OF THE REPORToovcemmeemmeresmeessasesmssessssesesasen 1
2 PROJECT SPECIFICATIONcooiiiiccscc i e 1
2.1 BaCKZIOUNA ccouviiinieiiirienieiriersnrnereitssssctisest st sas s sasssse e sassnsmsasat sasstsbsassesssssnesassnsssassesesassesssases 1
2.2 GOALS crrveermeecreeiiirniossetiiiisssenisisssstessatssstnessasrssnsssssasssnnsssnssssattasanssesnnsssnsassnnss st aesernessaas seraes s R e s anes 2
2.3 TASKS vevrererereresessnssessisorsassasssisasssasserssssnessessssssnsessassnssssssassessesssesssesossestessassssssesnessnssansssssossassassanennass 3

2.3.1 Task #1: Multicomputing Architecture for the Complete Intervisibility Database.................. 3

232 Task #2: Data Structure and Format for Storing Complete Intervisibility Database 3

2.3.3 Task #3: Complete Intervisibility Database..........c.ccoiiiiiiiiii s 3

234 Task #4: Complete Intervisibility Database Tactical Decision AidS........coovviinniiiins 4
3 PROJECT ACHIEVEMENTS ... srrnneennessscnnsss s e 4
4 THE MULTICOMPUTING ARCHITECTURE...........ccccoimiirreencc e 5
4.1 OVEIVIEW ueerurrurrrereersesassanssesseesmmansstssssssesassssessessssontsntsssssssssisnessessisstessssssessessssssessessssssessessesnssassananes 5
4.2 Design rereseeseeseessesrereesseeseestITEeEIISbEesISRSEES SN E N e NSNS RO RS PR E SRS SRS S R RSB e R e R e e e e SR e R a R e e e R 6
4.3 PerfOTTIANCE «uvvveeerrererrereeresessersesssessesanssssssesassseesnesaisneasnasssssessssssessessesssssssssssssssssssassssnsssessesnssensen 10
4.4 P0SSible dEVEIOPIMEILES ...ucuvrierrinirnnieracerasneresssssssssnsssesseassenssanssssnanssssorssssssssesssasssssssensuassesssassenes 10
5 BUILDING THE COMPLETE INTERVISIBILITY DATABASEc...... 11
5.1 OVEIVIEW ..curerereereersersrrarssasssssessessesssssssassissesssssnessmessassasssssessisstssesstsssesssassssssassestersssnsassessssssassansan 11
5.2 Database desi@N......cuccniiiiiinenirnnnrensseesnsersissssenseonansnasanessesassaess 11
5.3 Database construction: size and performance...........uerecrrninrinneen .13
5.4 Tool to extract one Visibility grid.....ccouiiinnimerninninnieenseiiesessennenossn 16
55 Possible devVEIOPMENTSccueveeinernnieiiiininiisreennnseneninesteninciinissssnssssessesssssesansssssessessnssssssaassassens 16
6 TACTICAL DECISION AIDS ...t e e 17
6.1 Overview 17

6.1.1 CUmUIALiVE VISTDIIEY ...veveveeieirieiieiierir ettt e e 17

6.1.2 Post of maximum VISIBIIIEYoveeeieen et 18

6.1.3 Multi-Observer Masked Area PLot........cococeiinieeiinecinenec et 20
6.2 I PIEMENEALION c.vvecrierrerinnrcnstntstessessessener st tsse ot sonsestesstonsesaosssssssasertessssnssasrsassssnsess 20
6.3 Software designcceeneriiereinresnecrurineens w22

6.3.1 Classes to represent a single or group of MAPSc.ccooviiiiiniiiiicc 22

6.3.2 Classes to represent a CID (complete intervisibility database)...........ccoevniicrinnicnnnne 22

6.3.3 Classes to allow display 0f @ CIDccciiiiiiininiiii s 23

6.3.4 Applications classes to support command line utilities.ocooieieieciiniiii 23

6.3.5 Application for viewing @ CID........coiiiiiiiioiiiine s 24
6.4 Performance .. 25
6.5 Examples of results e 26
6.6 Possible developments 26
7 FUTURE DIRECTIONS ... ciimsss e ns e re s nn s s en s s e e en s nessssssensnens 27
8 APPENDIX: MULTICOMPUTING ARCHITECTURE SOFTWARE 28
8.1 Directory structure 28
8.2 Installation.. .. 28
8.3 Invocation of ArcInfo from PERL 29
8.4 Invocation of the Visibility analysis........cccccoeenvvesinninnane 30
8.5 The monitor utility 31
8.6 Task Farm Coordinator script 32
8.7 Other script UHHHES ..covimcciiiiiniiinicsticsiesinnrrrr s sssese e ssssanssassansanssessassaessessasessanees 32
8.8 State of the code 32

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 i

© 0 000 0000600000000 060000006O0C0O0COCOCGEEOGOO O

Abstract

The report describes research intended to enhance the timeliness and scope for intervisibility
analyses to improve decisions related to intervisibility. The research entailed the development
and use of prototype software to:

1. Manage the completion of a large number of visibility analyses, each of which determines
the visible regions from a point in a digital elevation model. The project accomplishes the
visibility analyses by efficient use of spare CPU cycles on a network of processors.

2. Build a database from these analyses. The database is sufficiently compact for a test grid of
466 rows, each with 336 columns to reside comfortably on a CD (it requires 84Mbytes).

3. Extract information from the database using a series of tactical decision aids.

The concurrent execution of multiple visibility commands, accomplished by the development of
a multicomputing framework achieved significant speed-up, limited only by the number of
processors available (13). The compression methods adopted for the database achieved ~97%
reduction in volume, whilst still allowing timely access to the data to support interactive use of
tactical decision aids.

1 Overview of body of the report

This document reports on a 3-month project undertaken by the Department of Geography in the
University of Edinburgh, to explore techniques for enhancing the computer-based analysis of
terrain to aid in decisions related to intervisibility.

The goal of the project was to investigate and prototype multicomputing software, to construct a
database of intervisibility data, and to develop several demonstration tactical decision aids. The
concurrency is achieved by executing ARCINFO upon a number of networked processors,
utilising spare processing time.

Following a restatement of the project specification, the report describes each of the major
components of the project in turn: the multicomputing architecture, the building of the database
and the tactical decision aids. In each case the discussion includes consideration of the usability
of the component, and the scope for productisation and further development.

Appendices give further technical information, focussing upon orientation for those who seek to
run or further develop the prototypes. An associated CD includes this Final Report, a power-
point presentation, all software (with documentation of the Java tactical aids), and a complete
intervisibility database for the test dataset.

2 Project specification

2.1 Background

Intervisibility is the term used to describe the effects of terrain on visibility. It is a key factor in
military terrain analysis and impacts a soldier’s field-of-view, viewing distance, and
engagement ranges. A number of different intervisibility products are available. Point-to-point
intervisibility results in a line-of-sight profile (Figure 1a). Single point to multiple point
intervisibility produces a masked area plot (Figure 1b). In both figures, green indicates visibility
and red indicates no visibility. Intervisibility products have been largely limited to line-of-sight
profiles and masked area plots because of the amount of time required to generate individual
products.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 1

Clark Ray and Bob Richbourg proposed a new intervisibility product, the complete
intervisibility plot. This new product stored information on the cumulative intervisibility from
every post to every other post in a Digital Elevation Model (DEM). This product is useful
because it can provide information on the relative visibility of locations in a DEM. While a
complete intervisibility plot opens up a new area of terrain analysis research, it is difficult and
time-consuming to compute. Ray developed an approximation technique to speed the
calculations, because it was thought that it would be too time-consuming to generate the product
using standard processing techniques. In performing the calculations, Ray did not maintain the
intermediate intervisibility plots, but rather stored the cumulative relative intervisibility.

Figure 1a : Line of Sight Profile Figure 1b : Masked Area Plot

This effort will attempt to re-examine the generation of complete intervisibility information
within a multicomputing environment. A Complete Intervisibility Database (CID) is a database
consisting of the masked area plot information for all posts in an elevation model. For a small-
sized 400 x 500 DEM, this would consist of 200,000 masked area plots. Unlike Ray’s work,
intermediate results will be maintained so that they can be used to generate multiple Tactical
Decision Aids.

While it may be too time-consuming to calculate complete intervisibility on a single machine, it
should not be difficult to break the job into smaller tasks and complete them on multiple
machines. This will be done by scheduling the jobs to run at low priority, when the computing
power is under-utilized.

This effort will develop new and innovative techniques to create, store and exploit a Complete
Intervisibility Databases. In addition, it will stimulate additional research and analysis related to
a intervisibility analysis. This information can be used to investigate the relationships between
intervisibility and terrain, to evaluate issues associated with Ray’s approximation technique, as
well as to develop a new generation of tactical decision aids based on the Complete
Intervisibility Database.

2.2 Goals

The four goals of this effort are to...

1) Develop and implement a multicomputing architecture for generating and exploiting a
Complete Intervisibility Database.

2) Design a data structure to store the results of a Complete Intervisibility Database

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 2

O...QCQ.O.OQQ.CQ...O.O.‘.‘O..OOF

3) Generate a Complete Intervisibility Database for a 1:24,000-scale U.S. Geological Survey
DEM

4) Develop three (3) new tactical decision aids based on the Complete Intervisibility Database

2.3 Tasks

2.3.1 Task #1: Multicomputing Architecture for the Complete Intervisibility
Database

The first task was to develop the multicomputing architecture for the Complete Intervisibility
Database. The proposed configuration would utilize multiple UNIX computers running ArcInfo
on a network. Arclnfo would be used for the visibility analysis and data manipulation. The
architecture would provide for the following Production Management capabilities

a. Register available computers with appropriate licenses on the network
b. Manage the division of the tasks

c. Determine computer availability for processing

o

. Allocate of tasks to muitiple computers

[oN

. Monitor the status of on-going jobs
e. Verify that jobs have been completed successfully

f. Report on status of work, i.e., jobs completed, jobs in progress, remaining jobs

2.3.2 Task #2: Data Structure and Format for Storing Complete Intervisibility
Database

The Complete Intervisibility Database represents a new concept in terrain analysis and the
optimal storage configuration for the results has yet to be designed. It would be possible to store
the results as a series of ArcInfo grids, but the management and overhead associated with this
approach may be unreasonable. For example, for a 1201 x 1201 elevation matrix, there would
be 1,442,401 grids.

The proposed structure for storing the Complete Intervisibility Database would facilitate rapid
access and analysis of the datain a multicomputing environmentAccess was emphasized over
minimization of the storage requirements.

2.3.3 Task #3: Complete Intervisibility Database

In order to demonstrate the working multi-computer architecture, the University of Edinburgh
was to create a Complete Intervisibility Database for a U.S. Geological Survey 1:24,000-scale
Digital Elevation Model (DEM). The source data set was a relatively small DEM with 466 rows
and 336 columns. There were 156576 masked area plots in the Complete Intervisibility
Database. This compares with the National Imagery and Mapping Agency’s standard Digital
Terrain Elevation Data (DTED) Level 1 data set with 1201 rows and 1201 columns and the
DTED Level 2 data set with 3601 rows and 3601 columns.

The resulting Complete Intervisibility Database would be generated using the multicomputing
architecture specified in Task #1 and the results will be stored in the data structure and format
specified in Task #2.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 3

2.3.4 Task #4: Complete Intervisibility Database Tactical Decision Aids

The Complete Intervisibility Database would be used with exploitation software to generate at
least three (3) tactical decision aids. These would include at a minimum

a. Cumulative Visibility. For each post in the DEM, the cumulative visibility would be
calculated. This would be determined by counting the number of masked area plots in which
the post is visible.

b. Post of Maximum Visibility. For each post in the DEM, the post of maximum visibility
would be calculated. The resulting table would store the location of the masked area plot or
plots that covers the post and has the maximum number of visible posts. ¢. Multi-Observer
Masked Area Plot. For a user-specified polygon, a multi-observer masked area plot would be
calculated. This would be determined by summing the masked area plots for all locations for
multiple observation points. Posts with high values will be locations that are most visible.

3 Project achievements

1) The multicomputing architecture has been completed and tested across 13 UNIX
processors. We used a ‘task farm’ approach: each workstation requests a new task when it
is ready to process it. One processor also acts as coordinator of the task farm. The
coordination is achieved using PERL, remote shells, and shared directories. The tasks are
performed using local disk space, results being copied to a final directory on a shared disk.

It includes the ability to:
a) Manage which processors are active in any run.
b) Distribute visibility analyses to each processor.

¢) Respond to computer availability. By running process at low priority, spare CPU time
is used. The ability for a workstation to assess its spare capacity before requesting a
task is not implemented: the hooks for this exist.

d) Monitor the status of on-going jobs. A monitor utility, run by a user:
i) Lists jobs in progress.

ii) Lists jobs that have failed (identified by generation by the job of an ARC error
message.) These jobs will be rerun when the task farm is next started, as errors
might be due to circumstances needing user intervention.

iii) Generates statistics concerning use of CPU time

iv) Recognises failed processors based upon the average CPU time per job and the
elapsed time since the last job was started. This utility can cause the failed
processor to be restarted within the task farm.

¢) Write statistics to disk periodically, to profile CPU use and task completion across the
architecture.

f) Re-attach a failed processor to the task farm.

g) Close the task farm at a specified time, holding the status of completed jobs for the next
occasion when the task farm is used. (This aliows scheduling of the task farm if
desired, for example from 7pm to 7am daily, and over weekends. An alternative mode
of use is offered by the running of tasks at low priority: in many cases the task farm
will be started then run to completion.)

h) Restart the task farm at a specified time, filling gaps in any missed or previously failed
tasks, then continuing from the run reached previously.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 4

|

2) Data structure and Format for storing the Complete Intervisibility Database

This has been designed, implemented and tested. It is described below. A simple compressed
representation of several visibility grids is used; many such files exist indexed by directory
names.

3) Complete Intervisibility Database (CID)

This has been generated.

4) Tactical Decision Aids. These have been coded and tested..
In addition:

5) A Java utility has been coded to allow interrogation of the database and of Decision Aid
results.

6) A utility has been written to extract one view

7) A utility takes an ArcInfo DTM file and installs it for use by the multiprocessing
architecture.

8) Several minor scripts:
a) List processes owned by the user on all active processors.

b) Check for the first incomplete process.

4 The Multicomputing Architecture

4.1 Overview

The goal of supporting the multiple visibility analyses within ArcInfo was implemented as a
prototype software system. This was done as a generic architecture to support a class of
problems in multicomputing, a subset of what is sometimes termed high-throughput computing.
The functionality is as follows:

1) Utilise multiple processors to run a large number of tasks of typical run-time of a few
minutes. Due to the relatively short run-times, check-pointing and migration of processes
between processors is not required. For example, using the test dataset provided, 9828
tasks were required, with run times of between 2 and 5 minutes, depending on which
processor was used.

2) Minimise management of worker processors by an operator.

3) To allow coordinator and workers to be run/stopped/powered off at any time and the
coordination of tasks to be recoverable.

4) The mechanism used is to be generic, to support visibility analyses or other similar
concurrent tasking, using GIS or not, where a simple script can cause the task to run.

5) Use standard operating systems and functions. This ruled out MOSIX, which supports
multi-processing on LINUX clusters.

This functionality is achieved by parallelism at a level above that of the individual processes:
speeding the execution of one visibility analysis by using multiple processors would be
impractical in 3 months, and would in any case be less efficient than running multiple
processors each on one visibility analysis. In general parallelism is most efficient when applied
at the highest practical level. Given that more than 9,828 analyses are required for the test
dataset, until more than this number of processors is available no benefit is derived from the low

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 5

level parallelism. Furthermore, many larger datasets, with correspondingly more tasks, are
likely to be used.

The project task was accomplished by:

1) A review of pre-existing multicomputing software. Most related multi-processing
frameworks are more complex than is needed here. Nothing suitable was found. However,
noteworthy is CONDOR, http://www.cs.wisc.edu/condor, which supports processing where
each task runs much longer than is required here... it allows check-pointing and migration
of processes, for example.

2) A review of possible methodologies. TCP/IP messaging incurs minimum overhead, but
results in more complex process management. Java supports remote method invocation,
but this was considered over-sophisticated, and again less transparent to the user and
maintainer of the architecture. Object-oriented methods using request brokers and many
servers were also considered over complex for this duration of project. A simpler method,
more transparent to the operator of the system, was tested and found more than adequate.

3) Implementing an architecture based on a combination of remote shells invoked by one
coordinating process and use of one shared filespace, from and to which each worker
process read/wrote data.

4) Developing utilities for profiling and monitoring use.

4.2 Design

The Architecture comprises a Coordinator process and multiple Workers (each comprising a
different processor).

Coordinator

Worker running UNIX,
ARCINFO, zip

Multiple processes, each residing on a

different processor on a local area network

Figure 2 : Task farm: coordinator process and multiple worker processes

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 6

© 0 0000000000000 000600600C006OC0O0COCOCGEOGEOSOG O]

The coordinator receives requests for a task (in this case, a visibility analysis) from each worker,
when that worker has either initialised or else completed the previous task. Such an architecture
is termed a task farm, and is commonly used for low level parallelism (for example to process
different sub-sets of data in a parallel program). As described further below, in this case a task
comprises the execution of a ArcInfo command, and the zip compression of results. Worker
processors were running UNIX in this prototype.

A run is controlled as follows (Figures 3-5):

1 A controlTaskFarm script is run on the coordinating machine. This is the only user action
required. The script will download to each worker, by rcp, and run by rsh, a workerlnit
script on each worker.

2 The workerlnit script copies files from shared directories to the workers own workspace, to
be ready to run tasks, and sends a request for a task back to the coordinator. The
consequence of this is that updates to scripts are propagated to all workers at initialisation:
setup of workers is automatic. The request comprises writing a file with the worker’s name
encoded within it, to a shared directory that is periodically (every Ssec) checked by the
coordinator. The script could be extended to wait until the processor activity falls below a
threshold. This has not been coded: it was simply preferred to run all tasks at a low

priority.
3 On recognition that a worker requires a task (by receipt of data/message/file written by that

worker) the coordinator determines the next task to be carried out, and invokes this on the
specified worker by rsh to run the workerTask script on the Worker.

4 The workerTask script causes a task to be carried out, and copies the results to the shared
directories of the database. (In some tasks a Sink process, to collate these data would be
needed: this is not necessary here, as once written to the shared directory no further
processing is required to build a database.) The workerTask script then requests a new task
from the coordinator, using the same mechanism as above. It also generates a trace file for
each task, and scans this for errors. If one is found, then the trace file is copied to the
coordinator’s taskF ailed directory.

Processing thus proceeds with the coordinator allocating tasks as workers become available, so
the changing availabilities of processors (due to other computation) or the different speeds of
processors is managed within the task farm: there is no pre-allocation of particular tasks to
particular workers.

Closedown happens when all tasks have been run, or when an operator intervenes by runnning
the script causeStop, which could be invoked (as is the case for controlTaskFarm, from a timed
batch queue). The task farm then ceases sending more tasks to workers, and waits until the
current tasks are completed.

The use of disk files, rather than something more elegant like TCP/IP, allows access to the state-
of-play by other scripts and also by an operator, in particular to monitor the tasks being
executed. It might also better suit the focus upon not running daemons on workers, but ensuring
that if the coordinating process is closed then all workers are likely also to close.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 7

',

i

Coordinator Worker
o rsh’ ;

‘ Initialise |l 3 workerlInit

Wait for d

requests <

request

Send task, with —

task no., etc. as
arguments %

workerTask

Run task scripts

Request next
| task

| ARC/NFO
CIT datﬁbaslei, visibility
written by a ;
workers e Z1p |
Figure 3 : Overview of task farm

Coordinator Worker S
Initialisation of NN e
each worker:

U Seript
i "'Iﬁ-ﬁl@g e
rsh: create) - :
worker directory
rcp: copy Task |
Farm scripts

Generic task farm

Scripts for worker

Rsh: run workerInit ;

| workerInit

“» sends request
7 Sene

Figure 4 : Initialisation of worker

Mechanisms used are:

s PERL

e Shared directories as a means of communication from workers to the coordinator:
e To send requests
e To write results.

o Rsh is used by the coordinator to invoke remote shells on workers. Using ssh would be
preferable in “live” use of the software, due to security issues. Each rsh comand is invoked
from a forked process from within the coordinator. Consequently, no daemons are run on
worker machines, and abrupt closedown can be achieved from the coordinator, if required.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 8

(

Invoked by coordinator: rsh
with task number and shared-
directory name as parameters

WorkerTask:running its first task

copies task-

| specific scripts ‘

and data - Task-specific

to local disk .scripts and
DEM data

Runstask | : R ‘
il locally /

| Copy results to shared
i directory

Figure 5 : Worker processing to run a task

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh

10/07/01

9

4.3 Performance

The overheads of the architecture software did not significantly limit performance in the tests
run in Edinburgh: the ArcInfo visibility analysis was the dominant user of CPU time, as would
be expected. Performance figures gathered in the context of the visibility analyses to build the
database are discussed in the following section.

One observation indicated that the overheads of the task farm were small. The visibility
analysis scripts check to see if the data already exist for a particular task; if so then a task is not
repeated. The worker carries out this check. This characteristic was used to assess the speed
with which tasks were assigned by the architecture. The run was set up to repeat 326 tasks, for
which data already existed. Using 11 processors, these tasks were allocated in 3mins 6secs,
during a term-time afternoon. This was with the task farm configured to wait for 5 seconds
between polling for requests (chosen as the default, and used in other tests). Reducing this
period to 2secs reduced the run-time for this test to 2min 32secs. Other values were not tried.
For tasks of very short duration, and/or for many workers, efficiency could be further increased
if one task-farm task caused several application tasks to run.

4.4 Possible developments

The prototype was also intended to allow, with some limited further development:
1) different types of task to be performed either concurrently or consecutively

2) determination of what processing was required by a task during a run. The goal was to
allow future work to support applications in which the results of one series of runs
influenced the commands executed by future tasks. In the present software, this is not
implemented, but is considered to be a viable development.

For more than use as a prototype some tidy-up of code would be desirable:
1 Some additional diagnosis of error conditions would be required:

2 At present there are some remnants of first-version mechanisms in the code (checking for
completion by the existence of a “.done” file rather than by checks of the CID database
itself. The latter is now done after a run to set up the finished.tasks file with the number of
the task before a gap in the database.).

3 The use of finished.tasks is imprecise after the last task has been run; the use of total.tasks
(a file set up by the installdata script) may best be superceded by a different mechanism to
recognise the last task to be run. It would be preferable to allow the last task to be
determined during the run, in some cases perhaps. This approach is acceptable for
generation of the CID.

4 The monitor utility does not check if the last allocated task for a processor has yet
completed.

5 The decoupling of the task-specific scripts and the task farm control was compromised to
check the database after a run. A cleaner interface between the task and the task farm is
desirable.

6 The shared directories are assumed to have the same pathname on all machines. This is ok
for the configuration in Edinburgh, but might be a constraint in general.

7 The controlTaskFarm, monitor, and causeStop scripts, together with the various other minor
scripts useful to snap-shot the database and system activity could be better packaged to aid
future use.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 10

B |

5 Building the Complete Intervisibility Database

5.1 Overview

The database is required to comprise the visibility analysis from each grid point, held in such a
way that the specified range of decision tools can be executed in a reasonably timely manner.
Given the timescales for the project it was decided to maximise the exploitation of existing
tools, and seek a simple database structure, one which could in future be distributed across
multiple disks to facilitate parallel implementations of the decision tools. The approach was as
follows:

1 Use Arclnfo to process 16 points at a time.

2 Use zip compression on each of these files.

3 Use simple directory names to index these files by row.
4 Use the capabilities of Java in reading the zipped data.

The ability of ArcInfo (the required tool for the visibility analysis itself) to run up to 16 analyses
at once allowed a sub-grid of 4 by 4 points to be processed in each command. This was thought
likely to maximise the similarity between the results from each point, and hence improve the
scope for data compression.

5.2 Database design

Input is a regular square grid containing elevations at each a post in the centre of each grid
element. There are nCols x nRows posts in the grid. Rows are numbered from the top of the
grid in the normal image-processing convention.

A Masked Area Plot for the post at column i and row j, MAP(i,j) contains a binary value for
each post in the grid indicating whether that post is visible from the originally selected post.
The MAP therefore contains nCols x nRows binary values and the simplest representation is an
nCols x nRows array of bits.

A Complete Intervisibility Database (CID) is a collection of MAP(i,j) for each post in the
original grid. There are therefore nCols x nRows MAPs in the CID and the total size is nCols x
nRows x nCols x nRows bits. For an input grid of 336 columns by 466 rows the CID is
24,516,043,776 bits or 2.9Gb. The size of this suggests that some form of compression is
desirable.

Arclnfo can process up to 16 observer points in one command, the result being stored in an
integer grid with 16-bit values where each bit represents an observer. By selecting the 16
observers in a 4x4 subgrid of the original grid we can expect there to be significant correlation
between the bits in a 16-bit word, which will aid in compression. The post processing of a MAP
can also be simplified with this form of representation since each 16-bit value corresponds to a
post and therefore post-by-post processing is simplified compared with unpacking single bit
values. The collection of 16 MAPs together is called a MAP16 and is identified by the column
and row of the top-left post. There are therefore (nCols/4) x (nRows/4) MAP16s in the CID.
For a 336 by 466 input grid there are 9828 MAP16s. The MAP16s are generated in binary form
by converting from ArcInfo grid to BIL format. This database structure has the advantage of
simple random access to any MAP16 and expansion is achieved using standard tools available
on almost all computing platforms.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/61 11

Rather than develop specialised compression techniques, we decided to investigate commonly
used compression software. Initial tests with very sparse MAPs showed compression factors of
between 100 and 300. Based on this we decided to use a very simple database structure based
on directories in the native file system. Each row of MAP16s is allocated a separate directory
named from the row number. Each directory contains a zip file for each MAP16 in the row with
the name based on the column number of the MAP16. The zip file contains a single compressed
BIL representation of the MAP16. The top directory of this structure also contains a header file
describing the original DEM, projection information and a missing value mask.

example -> header (where -> denotes contains, so directory example contains header, proj,
mask etc)

proj
dtm (an ArcInfo ASCII grid of the heights)

mask (used for missing values)

0 -> 0 im.zip -> 0 im.bil
4 im.zip -> 4 im.bil
8 im.zip -> 8 im.bil

4 -> 0 im.zip -> 0 _im.bil
4 im.zip -> 4 im.bil

8 im.zip -> 8 im.bil

8 -> 0 im.zip -

Figure 6 illustrates the organisation of the complete database, showing the decomposition of the
4-dimensional structure into a stack of 2-dimensional slices grouped by row.

W= O

o

Row 0 —

I s

01 2 3 4 5 -

O 2]

0| o o o o]] o o
1| o o] o o o
2| o o o o o a
3| o o] o a o

41 o a o] o o Row 1

5| o o o o o a]

Figure 6 : Complete Intervisibility Database representation

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 12

5.3 Database construction: size and performance

The final database, with each file separately compressed, is 84Mbytes i.e. approx 3% of the raw
4-D bitmap size (2.9Gb). It comprises 9828 files, with 84 files in each of 117 directories (one

directory per row). The distribution of file sizes is shown in figure 7 and spatially in Figure 9,

and the disk space used for each row (the sum of the 84 files) is shown in figure 8. The

relationship between file size and visibility data has not been explored other than superficially.

Distribution of file sizes (16point
blocks)

Number of files

N 9B A NP D
File size (kBytes)

Figure 7 : Distribution of size of compressed MAP16 files

disk space (kBytes)

Disk space per 16-point block row

1100
900
700

- N OO ¥ 0 O i~ 0 O O
- N O ¥ 0O O N~ 0 O <«
-

block-row number

Figure 8 : Total of 84 compressed MAP16 files in each row

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh

10/07/01

13

On a SUN Sparc 300MHz processor, most runs took between 117 and 130 seconds. A single
run performs the visibility analyses for a block of 16 points. In a typical run of 124 seconds, 5
seconds extracted the points for which that analysis was run, and 117secs were used for the
visibility analysis.

The complete database was built in 43hrs 26mins using 13 processors, of which 5 were 300MHz
Sparcs, the remainder being older Digital processors. Each processor used in excess of 90% of
its CPU time in running the tasks. Table 1 is based on an extract the monitor report run on
completion of the last task and shows the relative powers of the processors (ts1,2,3,4 represent
four workers running on the four-processor Sun server.):

File size at block celis
1-5

6-8

9-12

13-16

17 - 22

23-33

* & &

Figure 9 : Variation in size of compressed MAP16 files

Ré&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 14

Total CPU time used on 9828 tasks: 1941929 (=elapsed time*12.42)

Batting averages: CPU total ntasks CPU/task %of CPU
tsl: 148743 1225 121 95
merid: 153062 690 222 98
moraine: 151495 251 604 97
ts2: 148764 1215 122 95
ts3: 148727 1219 122 95
tsd: 148726 1216 122 95
nox: 150528 1306 115 96
mar: 147830 476 311 95
tarn: 148460 478 311 95
fjord: 148227 490 303 95
delta: 150616 495 304 96
tundra: 150767 468 322 96
corrie: 145984 299 488 93

Table 1 : Extract from final monitor report

The variation in performance between the processors is clear: the pattern was consistent in all
runs. The efficiency of use of each processor demonstrates the effectiveness of the task farm.

Figure 10 shows the total number of tasks completed in each hour during a typical run, data
written hourly to a different statistics file for each day. These runs were performed during
vacation time, so the variation is not very great. There is improvement in efficiency after Spm;
the overnight dip is likely to be a consequence of backup. In two cases, higher statistics are
followed by fow counts, due simply to the timing with which jobs completed. (10 processors
were active in this case. Chance will lead to tasks closing just after the statistics are gathered on
some occasions.) The task farm is sufficiently flexible that variation in run-times can be
accommodated as other machine use varies; running each task at low priority (by use of the
UNIX command nice) ensures that other users are not inconvenienced.

Number of jobs completed per hour,
started at 15:55 on 19 April, ended after

hours 48 minutes. (4246

Number of
jobs 180

170
160
150
140

130
1555 1900 2200 0100 0400 0700 1000 1300 1600

Time

Figure 10 : Number of jobs run per house by time of day

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 15

l

The coordinator used CPU time totalling 1.1% of the elapsed time, including both the
coordination script (94 secs in the elapsed 2607 minutes, including the polling for requests), and

the child processes running remote shells for each worker task (1690 secs). (The latter figure
could be further reduced, if desired, by using threads rather than forked processes.)

Table 2 gives summary performance figures and also extrapolates these for larger data sets.

Rows |Columns|Directories| Files Raw |Compressed| Raw Sample | 50 1GHz |Compressed
Size Size (Gb) |generation] muiti- PC multi- | database
(Gb) time |processing|processing| read time in
(days) |generationjgeneration|{ java (min)
time time
(days) (days)
466 336 117] 9828 29 0.1 14.0 1.8 0.1 3.9
901 901 226 51076 76.7 2.1 72.8 9.4 0.8 104.4
1201 1201 301] 90601 242.2 6.8 129.4 16.7 1.4 329.6
3601 3601 901]811801]19,575.0 547.8 1163.1 149.9 12.2 26634.6

Table 2 : Estimated sizes and generation times of various sizes of DEM

More detailed database access times are reported in the context of the tactical decision aids,
discussed next in this report.

5.4 Tool to extract one visibility grid

A tool to extract a single MAP from the database for a specified point has been implemented in
Java to reuse the code developed for the tactical decision aids (6.3). The tool is used from the
command line and is invoked as follows:

java —cp src uk.ac.ed.geo.cid. ExtractMAP <cid_database_name> <output_file_name> <row>

<column>

The additional class to support this tool reads the parameters from the command line, creates an
instance of the CID database class, reads the header information to initialise this class and then
loads the MAP corresponding to the specified row and column from the database and invokes
the write method to create a BIL file.

5.5 Possible developments

The number of files and the small size of the zip files may cause a problem with lost disk space
on some platforms. In this case the individual zip files could be collected together in subsets.
An extreme case of this would see each row directory replaced by a zip file containing the
compressed version of each MAP16 in that row. This format may be more appropriate on CD
for example or on FAT16 based Windows systems.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 16

The distribution of the files across multiple disks would facilitate parallel implementations of
the tactical aids: indeed the multiprocessing architecture was designed to be extendable to
manage multiple types of task with this in mind.

6 Tactical decision aids

6.1 Overview

The commonality between the applications was exploited by use of object-oriented techniques,
in Java, as package uk.ac.ed.geo.cid.

Three programs, one for each aid, derive ArcInfo grids in ASCII form or a tabular data of row,
column and count in ASCII form. This allows a further program to view either the initial grid or
the decision tools’ results.

The basic algorithm is described in the following subsections in the form of simple pseudo-
code.

6.1.1 Cumulative visibility

Result is a ¢ x r grid of counts (cumvis) as shown in Figure 12.

The operation is illustrated in Figure 11 and in the following code:

Initialise cumvis to O.
for each MAP(i,j)
for each row r
for each col ¢
if (MAP [c, r] == 1)
cumvis [c, r] = cumvis [c, r] + 1

O 0O 0O 0o
a o o -~
‘l
O O p
‘l
,
‘i
d
o o o o o <~ g da -~
oo o o ot A 4 o
= oo o o Ot _
= = S " N o o0~
o o o o o -~<-u o -~
/JULILIL.IU a7
= ._-
% o o o o o L a
% o o o o o -2 a S
/JLILILILIU
= oo o o oO_-t o
= = S * B - N
e = I I - I * B >
/JUUUL]U
Y

Figure 11 : Cumulative Visibility Operation

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 17

1143,191)= 26918

Figure 12 : Display of Results of Cumulative Visibility Operation

6.1.2 Post of maximum visibility

Result is a ¢ x r array of tables each containing a list of col, row and count values as
illustrated in Figure 13.

This structure allows the case where more than one post has the same levet! of visibility from the
specified post. The operation is illustrated in Figure 14 and in the following pseudo-code.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 18

For MVP is
Row Col Row Col Visibility
65 23 129 268 57932
65 24 191 138 55445
65 25 42 45 21492
65 26 15 6 24838

65 27 15 6 24838
65 28 15 6 24838
65 29 15 6 24838
65 30 15 6 24838
65 31 15 6 24838
65 32 15 6 24838

Figure 13 : Sample from results of a Maximum Visibility Operation

o D o 5] o 5]
o o o o o ;
o o o o d _
d
1] u] o : p A
a] o _-- - A >
(Z o o a] o a] n] > : (1 >
Z’/, ju) O n} I O a) C . a5]
) 8]) O |2} s c 4
(JZ « e’ u|
<Z/n o T 1] T ul ! p
E/D 2] 2] O O o o o7 4
Z/Ll 18] 8] O 5] 0 _4 o ; - y
MAX \ o o o o o P g
g o o a o o o > d c
24//' O 18] o o O o > > -
<> 1 S I o—o 95
z3/1: o O aj O 2] >
\\2“>To 1o 1 T 'O _u -~
%A//' o 8| T a| O u|

Figure 14 : Maximum Visibility Operation

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 19

Initialise array of tables toc null.
For each MAP(i,]j) do
Calculate total visibility of MAP
sum = 0;
for each row 1
for each col k
if (MAP [k, 1]) == 1
sum = sum + 1

for each row 1
for each col k
if MAP [k, 1] == 1 /* to test is post is visible in this
MAP */
if sum > count [k, 1 /* does this MAP have higher
visibility */
{
add (i, j, sum) to table of values for cell [k, 1]
}
else if (sum == countlk, 1])
{
initialise the table for cell [k, 1] to (i, Jj, sum)

}

6.1.3 Multi-Observer Masked Area Plot

Result is grid of counts, ¢ as illustrated in Figure 15.
Input is a grid representation of the masking polygon (binary 1 = inside).

The operation is illustrated in Figure 16 and in the following pseudo-code:

For each MAP(i,j) do
sum = 0;
for each row 1
for each col k
if (MAP [k, 1] == 1 && poly plk, 1] == 1)
/* post is visible and within polygon */
sum = sum + 1
cl[i, 3] = sum

6.2 Implementation

These algorithms have been implemented in Java with a base class implementing a general
representation and a sub-class implementing versions of the algorithms optimised for the
MAPI6 representations. All 16 MAPs can normally be processed in one pass providing some
optimisation in performance. The code also bypasses processing for all posts where all 16 MAP
values are zero. Java provides access to zip files as part of a standard package which simplifies
implementation of the algorithms. Performance is reasonable with the operations completing in
around 2 minutes on the 41% CID leading to an expected 5 minute completion for a full
database in single threaded mode.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 20

U:\tsunami8\dtm\testar

Polygon

‘tsunamis\dtmitestar opened OK

Figure 15 : Display of results of Multi-Observer Masked Area Plot

gOooodgo

/
/
/
/
/

Figure 16 : Multi-Observer Masked Area Plot Operation

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh

10/07/01

21

6.3 Software design

Documentation of the software is provided in standard JavaDoc format in an associated
document. An outline description is provided here. The classes developed can be considered in 4
groups:

6.3.1 Classes to represent a single or group of MAPs

A generic class MAPBase contains fields and methods to store a set of MAPs as described in
5.2 The internal representation of a set of MAPs is as an array of bytes with a group of
consecutive elements in the array representing the MAPs for a rectangular block of posts in the
DEM. Static class fields bitsPerCell and bytesPerCell define the number of bits (and
therefore posts) in the group and the number of bytes required to store the group. The default
values are 16 and 2 respectively. The class also contains methods to read and write MAPs in
ASCII text, binary (BIL) and compressed binary (zip) format. Methods to support calculation of
the tactical aids for a set of MAPs are also provided. To allow graphical representation of a
MAP on a display screen, the class includes a method for generating an ImageSource. Class
PadStringis provided to allow right-justified numerical output for BIL headers

Class MAP1 6 provides some optimisations for the case where a block of 4x4 MAPs are stored
together, as described above in 5.2. In particular there are optimised methods to support the
three tactical aids described in the project specification. The optimisation takes advantage of the
internal representation as a simple array of bytes and processes the data with a single loop,
avoiding the overheads of nested loops. The manipulation of single bits is carried out using a
the & (and) operator where necessary although the cumulative visibility calculation uses an
array to convert the particular bit pattern in a byte into the number of bits set in that pattern as a
short cut.

Class MAPI is the simple case of a single MAP although in this case we use on byte to store a
cell rather than using a single bit. This is for ease of coding since the memory overhead was
considered unimportant in this case.

Class MAPInt is a specialisation of MAPBase which is intended to store a DEM rather than a
MAP but it takes advantage of some of the methods provided in the base class.

6.3.2 Classes to represent a CID (complete intervisibility database)

A generic class CIDBase contains fields and methods to manage access to a complete
intervisibility database stored on disk and the allow operations to be performed on the complete
database as well as tools to extract particular MAPs from the database. The methods
preProcessMAP, processAl1MAPand postProcessMAP allow collective operations to
be carried out on the database. The methods processAllMap steps through all MAP16s in
the database and calls processMAP on each in turn. Method processMAP is a dummy
method intended to be overridden in subclasses implementing particular algorithms.

Class CIDAreaVis overrides processMAPto call the polygonMaskedAreaPlot
method on a MAP.

Class CIDCumVis overrides processMAPto call the CumulativeVisibility method
on a MAP.

Class CIDMaxVis overrides processMAPto call the MaximumVisibility methodona
MAP.

Class CountXY provides the fields necessary to store the table of row, column and count values
at each post in a maximum visibility analysis and is used in CIDMaxVis. :

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 22

6.3.3 Classes to allow display of a CID

A generic class DisplayImage provides a method to allow a CID, a MAP or the result of a
tactical aid operation to be displayed. It provides a basic drawing method and a method for
handling mouse events. The default response to a mouse click is to display the mouse position
and the value of the displayed image under the mouse. Class CIDCanvas is used as the
graphical component on which to draw the CID and this provides the link between a mouse
click by the user and the Displaylmage subclass which is providing the image. CIDCanvas
also provides methods for updating the status bar in a GUI application.

Class CIDImage refines DisplayImage to provide support for displaying a grey-scale
image of a DEM and for overlaying that with a red/green partially transparent mask showing the
areas which are visible in a MAP. The mouse-event handler is written to retrieve the MAP
corresponding to the post under the mouse.

Class IntDisplayImage extends DisplayImage to provide support for displaying a grey-
scale image derived from a grid of integer values. This could be a DEM containing height
values or a integer grid containing the result of a Cumulative Visibility or Polygon Masked Area
Plot operation.

Class MAPDisplayImage extends DisplayImage to provide to allow display of a set of
MAP values.

6.3.4 Applications classes to support command line utilities.

Class TestCIDAreaVis reads parameters from the command line and creates an instance of
CIDAreaVis which is used to read and process a Multi-Observer Masked Area Plot operation.
The result of the operation is written out as a grid in ASCII format. The polygon to be used as
the mask is specified in the <polygon name> parameter and is expected to be a grid of the same
size as the CID and in ArcInfo ASCII format. The application is invoked from the command
line as follows:

java —cp src uk.ac.ed.geo.cid. TestCIDAreaVis <cid_database_name> <polygon_name>
<output_file name>

Class TestCIDCumVis reads parameters from the command line and creates an instance of
cIDCumVis which is used to read and process a Cumulative Visibility operation. The result of
the operation is written out as a grid in ASCII format. The application is invoked from the
command line as follows:

java —cp src uk.ac.ed.geo.cid. TestCIDCumVis <cid_database_name> <output_file_name>

Class TestCIDMaxVis reads parameters from the command line and creates an instance of
CIDMaxVis which is used to read and process a Maximum Visibility operation. The result of
the operation is written out as a table of 5 values with one line per row in ASCII format. The
application is invoked from the command line as follows:

java —cp src uk.ac.ed.geo.cid. TestCIDMaxVis <cid_database_name> <output_file_name>

Class ExtractMAP reads parameters from the command line and creates an instance of
CIDBase which is used to read a database and extract the MAP for the post at a particular row
and column. The result of the operation is written out as a grid in BIL format. The application is
invoked from the command line as follows:

java —cp src uk.ac.ed.geo.cid. ExtractMAP <cid_database_name> <output_file_name> <row>
<column>

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 23

6.3.5 Application for viewing a CID

Class CIDViewer allows a CID and its components to be display in a simple GUI context. It
utilitises the widgets defined in class CIDViewerFrame to allow the user to select the CID to
be displayed, to interrogate the database for the values at particular posts and to select a MAP
for display. It may be invoked with a single parameter to specify the name of the database to be
displayed. If this parameter is missing then a blank image is displayed until the user selects a
valid CID or CID component. Invocation from the command line is via:

java —cp src uk.ac.ed.geo.cid.CIDViewer <cid_database_name>

Figure 17 shows the sample DEM displayed in CIDViewer as a gray-scale image while Figure
18 shows a Masked Area Plot superimposed on the DEM. The arrow indicates the observation
post with areas which are visible displayed in green and areas which are not visible shown in
red.

Figure 17 : Display of Digital Elevation Model in CIDViewer

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 24

6.4 Performance

All timings in this section are based on a Sun Enterprise E450 with 4 x 300MHz processors and
512Mb main memory.

The basic java implementation of tools to access a CID allow reasonable real-time performance
for opening and database and retrieving single MAPs. Opening a database takes less than 1
second while retrieving a particular MAP takes around 0.25 seconds. The internal method for
reading a MAP16 in zip format take approx 25ms — reading all MAP16s in a database takes
approx 233 seconds. This is the base time for processing any operation which requires access to
all MAP16s in the database. The processing time for the individual operations is given in Table
3. ‘

Operation Time for 336 x 466 database
Read entire database 233s
Cumulative Visibility 356s
Polygon Masked Area Plot 338s
Maximum Visibility 706s

Table 3 : Processing time for individual operations

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 25

Eé,l: Viewer - full_database\dtm

(11513)=23

Figure 18 : Display of DEM and a Masked Area Plot

6.5 Examples of results

Examples of the results from the tactical aid operations have been shown above in sections
6.1.1,6.1.2 and 6.1.3. The first and last examples were displayed using CIDViewer. The
results derived from the sample data show some obvious artifacts which are the result of ripples
in the DEM data in the North-South axis.

6.6 Possible developments

The design of the software is sufficiently general that it could be adapted to different methods of
compression and database design could be added relatively easily. Since the database design is
file based and the software is implemented in Java it would also be possible to serve the
database using a standard web server and a slightly modified viewer program running as an
applet in a browser. Some simple packaging of the viewer would also allow conformance with
OpenGIS standards for web browsing and therefore use of the intervisibility database with other
servers.

Ré&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 26

R |

7 Future directions

The framework described in this report is very much a prototype, although the technology has
been proven to give a significant performance advantage. The prototype could be developed in
the future in a number of directions, including:

1) Add functionality to the task farm. Possibilities might include:

2)

3)

a)
b)

©)

d)
e)

g)

Allow multiple types of task to be co-ordinated in the task farm
Increase the flexibility of scheduling tasks

Allow the ArcInfo command to be generated by the task farm, reducing the processing
in each worker but increasing the range of possible analyses. The merit of this
approach is in cases where the choice of analysis might be subject to previous results.

Extend the task farm to support additional packages and applications
Extend to support mixed operating systems
Extend to support a secure operating environment

Running more CPU intensive tactical decision aids in parallel, perhaps with a sink
process to collate results from those aids.

Extend flexibility of the database

a)
b)

<)

Permit the database to be distributed across several physical disk drives

Web-enable the database, taking advantage of the efficient compression already
incorporated in the prototype.

Store the inverse CID with aggregate visibility measures

Add additional tactical aids, for example

a)
b)

multi-post visibility analysis

continuous/contiguous visibility analysis

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 27

Appendix: Multicomputing Architecture Software

7.1 Directory structure

e Tec top directory, on a shared disk, accessible to all workers.

e Tec/tasks top directory for tasks. (We are most of the way to having a task farm that
can manage multiple tasks with ability to switch between different tasks during a run,
or partitioning workers to run two task farms concurrently.)

o Tec/tasks/cit Complete Intervisibility Database files

Tec/tasks/cit/cit_database Gathers data from all processors.

Tec/tasks/cit/run Template files for a run: these are copied to processors’ run
directories. All scripts and programs specific to this CIT task are held here

Tec/tasks/cit/inputdata Holds original ArcInfo data.

e Tec/coord Task farm coordination files: generic to all uses of the PUFFIN
framework. Major controlling files (workers.names, controlTaskFarm.perl are
here.)

Tec/coord/wksetup Scripts copied to workers’ run directories

Tec/coord/wkreq Receives files constituting requests for tasks from workers.
Also holds a file of the last task delegated to a worker. One request and one
sent file per worker are held.

Tec/coord/taskFailed Any trace files from tasks recognised to have failed are
copied into here by workers.

Tec/coord/taskDone Each completed task has a file in here, generated by the
workers, read by the coordinator to generate profile of activity, and by the
monitor utility.

Tec/coord/monitor Profile and monitoring data reside here.

o Worker directory Usually a sub-directory of /tmp. Defined in workers.names (Figure 19)

e /inputdata Copy of tec/cit/inputdata taken once at initialisation

e /run files copied from Tec/coord/wksetup and Tec/tasks/cit/run

THESE FILES SHOULD NEVER BE EDITED DIRECTLY. They are overwritten at
intiation of the task farm, by files from the tec/coord/... and tec/cit.... directories.

7.2 Installation

One tar file, tec.tar contains the directory tree tec/...

It should be written to a filesystem with access from all workers. The current system assumes
that the files have the same directory name in all processors and the same username/account is
registered on each machine.

Workers are configured as follows:

e Are defined in .rhosts on the coordinating processor to allow the coordinating processor to
run rsh commands. (Could be replaced by ssh in future)

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 28

|

e Are registered in workers.names (Figure 19)

e Require PERL and Arclnfo to be available

e Require access to the shared tec directory tree

¢ Do not require any user intervention during a task farm run, normally.

A new DTM is made available by use of an installation scripts, install.per! and installdata.aml.
These create an ARC GRID, and also a points database, comprising the coordinates of each
DEM point.

7.3 Invocation of Arclnfo from PERL

In this description we work backwards, from the mechanism used to run commands in ArcInfo
to the PERL scripts. The invocation of ArcInfo from a script is typically accomplished by use
of the ArcInfo scripting language AML. The UNIX machines all used bash as a default shell,
with environment parameters set up from system-wide bash scripts. Therefore the AML
command was invoked from a bash script. The parameters for this bash script were determined
by the PERL script.

For example, to install data, the PERL includes:

SsourceGrid=$ARGV([0];
SsourceDir=$SARGV[1};

system("runArc \"installdata.aml $sourceGrid $sourceDir
../inputdata\"");

and the runArc bash shell script is generic:

#!{/usr/local/bin/bash

amletc=$§1

#echo "run with " Samletc
/etc/profile > /dev/null

SARCHOME/bin/arc \&run S$amletc

Finally, the installdata.aml copies a pre-existing GRID file, removes any null’s from the grid,
and creates a point database for each cell, with height associated with each point:

&args grid gridin citinput

stype move to working directory citinput
&workspace %citinput$

stype use grid vis for the visibility DEM.
copy %gridin%/%grid% grid vis

&type removing nulls

gridimage grid vis NONE fred im bil

Ré&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 29

imagegrid fred im grid in

stype making point database used to select viewpoints
gridpoint grid in points_in HEIGHT

addxy points_in

stype also hold an ASCII grid needed by the decision aid tools
gridascii grid_vis dtm

kill grid in

&sys rm ~R fred im*

&return

7.4 Invocation of the Visibility analysis

This follows the pattern described above: PERL calls bash which calls ARC with an AML script
and parameters. It is executed locally on each worker, using local disks:

o Header file: gives size of the grid; created by install script.
¢ Inputdata directory with point and grid data, set up by the same install script.
e The task number passed by the coordinator task farm

e A simple algorithm to derives a bounding box that contains 16 points, and extracts these
points from the point-database into a temporary database. It also derives the block row and
column.

The processing is thus:

1) From the task number and the file header, derive block bounding box and top-left
coordinates of grid block.

2) Invoke runArc with AML script arcvis.aml which:
a) select points within the block bounding box from the point database
b) run the visibility analysis
¢) convert the resulting grid to a BIL image
d) compress the image using zip
¢) delete temporary files

3) Scan the trace file from this task for error statements. If one is found, copy the tracefile to
the coordinators taskFailed directory, as task_number.trace.

(The error trap was activated once only, when an error in generating the block bounding box
resulted in no points being chosen. That error was fixed.)

The script arcvis.aml is:

sargs grid points outputworkspace tempworkspace xmin xmax ymin
ymax row col

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 30

&type Shared results directory is %outputworkspace$
&type Own working directory is %$tempworkspace$
&workspace %tempworkspace?

&sv outname = %row$

&sv tempname = %row% %col$%

&if [exists %outputworkspace$/%row%/%col% im.zip -file] &then

&return

&sv tempp := %tempname% P

stype Reselecting from (%xmin%,%ymin%) to (%xmax$%, ¥ymax%)
reselect %points% %$tempp% point

reselect X-COORD >= %xmin% and X-COORD < %xmax$

and Y-COORD >= %ymin$%$ and Y-COORD < %ymax%

NO
NO

visibility %grid$% %$tempp% point %$tempname® GRID observers
gridimage %tempname% NONE %outname% im BIL

&sys /usr/local/bin/zip %outputworkspace%/%row%/%col%_im.zip
%$outname% im.bil

kill %tempp%
kill %$tempname$
&sys rm %outname$% im.*

&return

7.5 The monitor utility

The script monitor.perl, run form the coordinator’s directory, lists information related to jobs
completed and in progress. If any of the active processors have yet to complete a task, then the
message “processor name — check configuration. Done Nothing” is written out. This is always
the case at the start of a run, when no error is present. Figure 20 shows an example of output
from running monitor.perl.

A command-line option alerts the user if one task has been active for more than twice its
average run-time. The option is invoked by adding any text to the command, e.g. “monitor.perl
check”. If a slow task is recognised then the processes running on the worker are checked to see

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 31

is workerTask is among those owned by the user. If so, the message “processor name seems to
be still running workerTask” is written out. If not, then the user is asked if a restart is required.

If a processor is known to have been closed down, and is restarted, then the command
“restartWorker.per] workername” will reconnect the worker to the task farm assuming the
workers directories were initialised correctly before the close-down.

The monitor script lists all gaps in the database: in the event that no valid observation points
exist (the DEM is undefined in the region, as happens in the test data at some parts of its
margin) Arclnfo considers an error to have occurred. The trace file of the task is written to the
coordinator's taskFailed directory, but the monitor utility counts both the total number of failed
tasks, and the number to have "failed" due to the lack of observation posts. In the 9828-task run
with the test data, 53 tasks terminated with no observation posts, and no other errors occurred.

7.6 Task Farm Coordinator script

Figures 22 and 23 show examples of the output from the coordinator script during initialisation.
Figure 24 shows an example of the output from the coordinator following invocation of the
causeStop script.

7.7 Other script utilities

Additional utilities have been written to:

o To scan database for the first missing task (used on closure of the task farm, so the next task
farm session begins at this task)

e To list al! gaps in the database and the last task to have completed.
e To restart a processor in the task farm

e To check activity on all workers

7.8 State of the code

The code functions as a prototype. It may be desirable to improve the following:

1) The overhead of the task farm management. This is not high at present. With 11 processors,
on an occasion when the CPU use on the visibility jobs was above 70%, the task farm
management itself costs under 1% of a CPU. The processor running the coordinator
process also completes the visibility jobs with an efficiency in excess of 90%, with other
unrelated system activity continuing. The wait-time within each processor has not been
measured. As additional processors are added (none were available here), then it might be
desirable to:

a) Increase the number of jobs run with each task. Current run-times are in the order of 2
to 5 minutes. Thus is would be reasonable to run 5 or 10 jobs in each task. If urgency
was essential then the number of job per task would be reduced as the end of the
complete dataset generation was approached.

b) The mechanisms employ the use of multiple small disk files, one for each completed
task. The task farm coordinator reads each once only in generating its hourly profile of
use; it then renames each. The monitor utility in particular currently reads all these files
(extensions done and DONE). It would be better to read and delete these from the
monitor utility, holding a summary between monitor runs.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 32

2)

3)

Clean up /tmp directories. This is simple to accomplish but is not included. It was
preferred to leave trace files in the workers’ run directories to allow checks of any
anomalous results.

Portability to NT. Achieving this was beyond the intention and scope of the project. The
workers.names directory includes the operating system of each worker named. To run on
NT, or a combination of operating systems, some perl scripts will need to be amended
either:

a) Branching according to the operating system of the worker

b) Invoking separate scripts (with NT system calls, and NT-style directory names, for
example)

The extent of these changes has not been assessed.

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01

33

11

tsl tsunami unix /tmp/tsl /usr/local/bin
ts2 tsunami unix /tmp/ts2 /usr/local/bin
ts3 tsunami unix /tmp/ts3 /usr/local/bin
tsd tsunami unix /tmp/tsd4 /usr/local/bin
nox nox unix /tmp/mjm /usr/local/bin

mar marsh unix /tmp/mjm/ /usr/local/bin
tarn tarn unix /tmp/mjm/ /usr/local/bin
fjord fjord unix /tmp/mjm/ /usr/local/bin
delta delta unix /tmp/mjm/ /usr/local/bin
tundra tundra unix /tmp/mjm/ /usr/local/bin

corrie corrie unix /tmp/mjm/ /usr/local/bin

This file should exist in the coordinator task directory.
line 1: no. of workers to use.

lines 2-(l+no. of workers to use)

unique name IPname opsys tempDir perlDir

where:

IPname: hostname for rcp to worker, and rsh to invoke a run on worker.
opsys: not used... assuming UNIX filesystems and some UNIX commands.

#
#
#
#
#
wunique name: allows multiple processes per IP name, as with an SMP machine
#
#
tempDir: directory used for local temporary storage.

#

perlDir: where to find perl.

Figure 19 : workers.names file

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 34

© 00000000060 00006O0O0CO0COCEOCEOONOOOOOEOEOOSO OO

Started this session at task 3392, 25 hr 48 min ago

Number of workers active: 10

Active tasks section removed from table: workers wait for closure of each, so the final figures here are not
meaningful: these are used during a run, not after it.

Total CPU time used on 4246 tasks: 862466 (=elapsed * 9.28)
Last task required will be 9828

Batting averages: CPU total ntasks CPU/task %of CPU
ts3: 83971 669 126 90
ts2: 84219 669 126 91
tsl: 84006 669 126 90
ts4d: 84018 669 126 90
mar: 87371 280 312 94
tarn: 88026 280 314 95
fijord: 88168 283 312 95
delta: 88463 279 317 95
tundra: 88720 278 319 95
corrie: 85505 170 503 92

Failed Tasks:
Total number of failed tasks: O

First gap in database is for 7639

Figure 20 : Output from monitor.per!

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 35

1

Started this session at task 321,

Number of workers active: 11

Active tasks: elapsed time,

471 secs:
17 secs:
32 secs:
300 secs:
118 secs:
335 secs:
67 secs:
67 secs:
62 secs:
72 secs:

315 secs:

355 on corrie
377 on delta
376 on fjord

365 on mar

371 on nox

363 on tarn
373 on tsl
374 on ts2
375 on ts3
372 on ts4

364 on tundra

task,

Total CPU time used on 46 tasks:
Last task required will be 9828

Batting averages:

0 hr 17 min ago

worker

8479

CPU total ntasks

tsl: 755
ts2: 755
ts3: 757
ts4d: 757
nox: 850
mar: 663
tarn: 946
fjord: 924
delta: 940

tundra: 627

corrie: 504

6

=N W Ww wWw a0 o

(=elapsed * 8.30)

CPU/task

126
126
126
126
121
221
315
308
313
314
504

%0
74
74
74
74
83
65
93
90
92
61
49

£ CPU

Checking taskFailed files for failures recognised by workers

Total number of recognisably failed tasks: 0

First gap in database is for task 327

Figure 21 : Example of monitor output

R&D 8707-EN-01 Contract N68171 00 M 5807

University of Edinburgh

10/07/01

36

Command to start: run from coord

directory

perl controlTaskFarm. perl /

Coordinator directory: ..tec/coord

Clear taskDone,taskFailed and monitor directo es — leave
finished.tasks

taskDone/*.DONE: No such file or directory Removes previous files from

‘ ‘ directories used by task

taskDone/*.done: No such file or directory

taskFailed/*: No such file or directory
COORD: read finished.tasks, starting after tagk 339
wkreq/*: No such file or directory

copied total.tasks for task type 0 from ..tec/tasRg/cit

process 1137 forked workerInit daemon for tsl

process 1140 forked workerInit daemon for ts2 Use rsh to initialise
each worker to send a

process 1142 forked workerInit daemon for ts3 request

process 1145 forked workerInit daemon for ts4

process 1149 forked workerInit daemon for nox
process 1151 forked workerInit daemon for mar
process 1154 forked workerInit daemon for tarn
process 1157 forked workerInit daemon for fjord
process 1160 forked workerInit daemon for delta

process 1163 forked workerInit daemon for tundra

process 1166 forked workerInit daemon for corrie

COORD started workers < List types of task: 1
onlv.

COORD: list of tasks known

0, ...tec/tasks/cit
COORD: 1list of workers known

0 tsl: tsunami unix /tmp/tsl /usr/local/bin

ts2: tsunami unix /tmp/ts2 /usr/local/bin

£s3: tsunami unix /tmp/ts3 /usr/local/bin List work.ers known to
the coordinator, from
tsd: tsunami unix /tmp/tsé4 /usr/local/bin workers.names

nox: nox unix /tmp/mim /usr/local/bin

1

2

3

4

5 mar: marsh unix /tmp/mjm/ /usr/local/bin
6 tarn: tarn unix /tmp/mim/ /usr/local/bin
7 fjord: fjord unix /tmp/mjm/ /usr/local/bin
8 delta: delta unix /tmp/mjm/ /usr/local/bin
9

tundra: tundra unix /tmp/mjm/ /usr/local/bin

Figure 22 : Task Farm Coordinator : initialisation -1

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh ~ 10/07/01 37

O 00000000000 OOOGEOODOOEOOEOONOOEEOEOEEOSOOO

9 tundra: tundra unix /tmp/mjm/ /usr/local/bin

10 corrie: corrie unix /tmp/mjm/ /usr/local/bin

mkdir: Failed to make directory "/tmp/ts2"; File exists
mkdir: Failed to make directory "/tmp/tsd4"; File exists
mkdir: Failed to make directory "/tmp/mjm"; File exists
mkdir: Failed to make directory "/tmp/tsl"; File exists
mkdir: Failed to make directory "/tmp/ts3"; File exists

mkdir: cannot create /tmp/mjm/.

/tmp/mim/: File exists
mkdir: cannot create /tmp/mjm/.
/tmp/mim/: File exists
nkdir: cannot create /tmp/mjm/.
/tmp/mjm/: File exists
mkdir: cannot create /tmp/mjm/.
/tmp/mijm/: File exists
nkdir: cannot create /tmp/mjm/.

/tmp/mijm/: File exists

mkdir: cannot create /tmp/mjm/.

/tmp/mjm/: File exists

workerInit on ts2 finiM_1

workerInit on ts4 finished
workerInit on ts3 finished
workerInit on tsl finished

workerInit on nox finished

Create the worker’s top directory if it doesn’t
exist. Do this by rsh. If it does exist these
messages are seen and are not a problem. (An
example of untidy-prototype not live-quality
functionality.)

e

Text from worker, when
workerlInit finishes. workerInit
sends a request to the
coordinator.

coordinator sends a task to the

forked from the coordinator.

Process 1297 forked daemon to send task 340 to nox

Process 1302 forked daemon to send task 341 to tsl On receipt of a request, the
Process 1307 forked daemon to send task 342 to ts2 worker. It does this from a
Process 1312 forked daemon to send task 343 to ts3 daemon (detached) process,
Process 1317 forked daemon to send task 344 to ts4

workerInit on mar finished

workerInit on delta finished

workerInit on corrie finished

Process 1333 forked daemon to send task 345 to corrie

Figure 23 : Task Farm Coordinator : initialisation - 2

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 38

various

worker
worker
worker
worker
worker
worker
worker
worker

worker

worker

worker

e000000000000000blococceccotooococoooocoe

...goodbye

Coordinator ran for an elapsed time of 554 secs

Wait time was 97.1119133574007 %

Closedown is caused by running

trace according to shell causeStop or by completing all

login/profile scripts in use. tasks. Coordinator counts the

< workers as they complete last
assigned-task.

nox finished
tsl finished Waiting for of 11 workers to finish

of 11 workers to finish

9

ts4 finished Waiting for 8 of 11 workers to finish
ts2 finished Waiting for 7
6

ts3 finished Waiting for of 11 workers to finish
delta finished Waiting for 5 of 11 workers to finish
mar finished Waiting for 4 of 11 workers to finish
tarn finished Waiting for 3 of 11 workers to finish
tundra finished Waiting for 2 of 11 workers to finish
fjord finished Waiting for 1 of 11 workers to finish

corrie finished Waiting for 0 of 11 workers to finish

Scans CIT database from 1%

The first missing task in the database is 405 task to find first missing file

°

Figure 24 : Task Farm Coordinator : Closedown

R&D 8707-EN-01 Contract N68171 00 M 5807 University of Edinburgh 10/07/01 39

